A Comparative Study of Two Spatial Discretization Schemes for Advection Equation
نویسنده
چکیده
In this paper, we describe a comparison of two spatial discretization schemes for the advection equation, namely the first finite difference method and the method of lines. The stability of the methods has been studied by Von Neumann method and with the matrix analysis. The methods are applied to a number of test problems to compare the accuracy and computational efficiency. We show that both discretization techniques approximate correctly solution of advection equation and compare their accuracy and performance.
منابع مشابه
The new implicit finite difference method for the solution of time fractional advection-dispersion equation
In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملSecond Order Positive Schemes by means of Flux Limiters for the Advection Equation
In this paper, we study first and second order positive numerical methods for the advection equation. In particular, we consider the direct discretization of the model problem and comment on its superiority to the so called method of lines. Moreover, we investigate the accuracy, stability and positivity properties of the direct discretization. The numerical results related to several test probl...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کامل